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Symmetries of the pre-Klein-Gordon bundle: a Lagrangian 
analysis of quantum relativistic symmetry 
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Departamento de Fisica Tebrica, Facultad de Ciencias Fisicas, Universidad de Valencia, 
Burjasot (Valencia), Spain 

Received 18 February 1985 

Abstract. We discuss here the Lagrangian formulation of a group theoretical quantisation 
procedure where the rest mass of a scalar relativistic particle is introduced by putting a 
restriction (the mass shell condition) on the manifold of a group, G l 5 ,  defining a larger 
symmetry. This group is obtained through one of the possible contractions of the conformal 
group and, because of its non-trivial cohomology, G,, allows for a central quantum U(1)- 
extension. Besides illustrating the appearance of the mass term in the relativistic Lagrangian 
as a consequence of reducing the symmetry, we obtain the Klein-Gordon ‘probability’ 
current as the one associated to a relativistic central symmetry. 

1. Introduction and results 

It is well known that the problem of quaqtisingt a relativistic particle in a geometric 
way presents some specific difficulties which are absent for its Galilean counterpart. 
These difficulties ultimately have their root in the relative nature of time in special 
relativity. Indeed, it is a special feature of the different 10-parameter kinematical 
groups [ l ,  21 that they fall into two different classes, of relative and absolute time. 
Those of relative time, like the PoincarC group 9, have a trivial second cohomology 
group, while those of absolute time, like the Galilei group G ,  have a non-trivial 
cohomology Hi(G,  U( 1)) = R’ [ 11. Thus, the Galilei group can be centrally extended 
by U( 1) [3-51 giving as a result an 11-parameter ‘quantum group’ 6(,,,,, which incorpor- 
ates a commutator of the form 

(1.1) 

In its quantum version, (1.1) reads [pi, x’]= -ih8{1 and allows for a complete and 
well defined geometric quantisation process on the group manifold of e(,,,) [6]. In 
contrast, no such extension exists for B [7], (1.1) is not included in its Lie algebra 
(and hence the difficulties of a relativistic position operator [8,9]), and the geometric 
quantisation of 9 cannot be directly performed. 

Associated with the above cohomological difference between the PoincarC and the 
Galilei groups are the peculiarities of the ‘non-relativistic’ limit. While the well known 
contraction process [IOI-in the form of the c + CO limit-brings B to G, this limit 
cannot be directly performed on the Klein-Gordon equation to obtain the Schrodinger 

[translation, boosts] = m x (central U( 1) generator). 

+ By quantisation we obviously mean here first quantisation, i.e. the derivation of the associated relativistic 
wave equation and the expression of the basic quantum operators acting on the wavefunctions. 
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equation without previously subtracting the rest energy, which otherwise would go to  
infinity. Finally, the apparent contradiction which presents the existence of a 
necessarily trivial (direct product) extension of 8 by U( 1) which contracts to a central 
extension e,,,,, of G is only solved after realising that the ‘non-relativistic’ limit may 
generate cohomology [I  1, 121. 

The above features of the relativistic geometry show that, to perform a geometric 
quantisation of the relativistic case in a way similar to the Galilean one [6], one has 
to resort to a group larger than 8? which does not preserve pwpr = ( m c ) ’ ;  the mass 
shell condition corresponds to an orbit of 8 on this larger group. This program has 
been recently performed [13] by taking as the starting point the 15-parameter group 
GIs which is derived by contraction from the conformal group. As we shall discuss 
in § 2, this group can be extended by U ( l )  and accordingly leads to a generalisation 
of (1.1) in terms of a 4-component off-shell ‘position’ operator. 

In this paper we shall restrict ourselves to analyse some aspects of the quantisation 
process from the Lagrangian point of view. In this approach the relativistic wavefunc- 
tion J, is a solution of an equation invariant under a ray [ 3 ]  representation of the 
above group GIs, a group which acts on an absolute time T besides acting on the 
ordinary Minkowski coordinates x@. It will be shown that the representation of GIs 
is projective because the true invariance group is a U( 1)-central extension of this group, 
6 1 6 ,  which exists because of the non-trivial cohomology of GIs. The Lagrangian density 
leading to the aforementioned equation, which originally does not contain a mass 
term, acquires a term of the form J/*+ when the mass shell condition is imposed; this 
also reduces the symmetry group from GIs down to 8. 

This paper is organised as follows. In § 2, and in a vector-bundle framework, we 
describe the Lagrangian formalism invariant under a central extension of GIs, and 
derive the expression of the sixteen conserved Noether charges associated with the 
6 1 6  symmetry after giving the group law of that extension and its action on the 
‘pre-Klein-Gordon’ bundle. Section 3 is devoted to describing the dynamics on the 
group manifold of 6 1 6 ,  including some brief comments on a group quantisation 
formalism [6, 131. After discussing how the partial breaking of the symmetry implied 
by the restriction to an orbit in GI6 introduces the mass shell condition, we finally 
consider in § 4 the introduction of this constraint into the Lagrangian formalism and 
the attainment of the familiar Klein-Gordon (KG) symmetries. In this way, a mass 
term appears in the Lagrangian density and the KG probability current is directly 
obtained, and the former absolute time parameter becomes the proper time of the free 
particle. 

2. Off-shell Klein-Gordon Lagrangian formalism 

Our task here is to find an invariant Lagrangian under the projective representations 
of a group GIs (or under the representations of its quantum extension by U(1), & , 6 )  

whose structure is compatible with the quantum interpretation of the Poisson brackets 
of its associated conserved magnitudes (see [14] for the case of the Galilei group) and 
which, of course, leads to an equation of motion generalising the KG one. The only 
requirement which is needed to have this group acting on Minkowski space A is to 
enlarge 4 (-R4) to 52’ by means of an additional coordinate T which, when the 

t We shall not consider here graded Lie groups; see in this respect [19] and references therein. 
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reconstruction to the physical situation is made, will become the proper time of the 
free particle. 

An essential feature of the group GI, [13] is thus its non-trivial cohomological 
structure; the wave equation of the system associated with GI5 is invariant only if one 
allows for projective representations. This situation, which is also encountered in the 
Galilei case, has to be considered as inherent to these quantum systems and not as an 
anomaly. In fact, the phases which appear in the transformation of the wavefunctions 
are incorporated into a new family of transformations by extending the group by U( 1) 
by means of a non-trivial system of exponents [3] .$ characterising the extended or 
quantum group 6, which is the true underlying symmetry group of the quantum theory. 
In this way, the group law of 6 1 6  is obtained by adding the composition law of the 
U(1) part, parametrised by B (or by l= eie),  

to the group law g”= g’ * g of G,5.  

U” E R4, A E  SO(3, l ) ,  its action on Minkowski space .A extended by r is given by 
Characterising the elements of G,, by g = ( b ,  A”, U’, A) where b E R, A” E R4, 

XI” = A”.,,x’ + uwr + A” 

T I =  T +  b. 

The multiplicative action of l= eie E U( 1) on the complex numbers allows us now to 
obtain a projective representation of G~~ or a linear representation of 6 1 6  on the cross 
sections t,b of the trivial vector bundle E = Rs X C  A R5 = .A X R  (the pre-Klein-Gordon 
bundle) by means of the expression 

[ U ( b ,  A”, U”, 4 @)t,bI(x‘, 7’) 

= exp[-iM($u’”u+r+ U ~ A ” . ~ X ~  - B / M ) + ( x ,  T ) ] ,  (2.3) 

where M is a parameter with dimensions of mass ([U] = LT-I, [ T I  = T )  which charac- 
terises the central extension 6 1 6 .  Two consecutive transformations reveal the group 
law of 6 1 6 :  

b”=  b ’ + b  
A”” = A‘” + A‘”,,AY + U’”b 

where the non-trivial local exponent .$(st, g) or 2-cocycle is given by 

Although (2.5) is uniquely determined by (2.3), different exponents differing in a trivial 
one tcob=S(g’* g ) - S ( g ’ ) - S ( g )  (i.e. in a coboundary; 6 is a real function on G) 
define the same extension and equivalent projective representations. 

The infinitesimal generators of the action of 6 1 6  on the bundle E 4 dl X R  para- 
metrised by the coordinates (7, x”, $, +*) where +, +* are the coordinates of C, is 
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obtained easily from (2.2) and (2.3) with the result 

2 ( b )  =alar 

Z(,p’y) = S ~ P Y X ~  a/ax‘ 

% e )  = i$ a l a $  -i$* a la$* .  

- 
X ( A * )  = a / W  

= r alax” - Mx,(i$ a l a $  -i$* a la$* )  

Among these generators there are 4 + 4  vector fields -?(A*, whose commutator is 
gPy times the central generator and which possess the adequate Lorentz transformation 
properties as to give, through their associated Noether conserved charges, ‘position’ 
coordinates and conjugate momenta. The full set of commutators is the following 

L2(b)r 2 ( A * ) l = o  [2(A*) ,  2 ( A ’ ) l = o  

[ 2 ( b ) ,  -?(,*”)I = 0 

[*(b)r Z(u”)l= * ( A ” )  [* (A”) ,  g ( ” ” ) ] = - g ~ & f 2 ( 0 )  (2*7) 

i2(A*)9 %(,”’)I = az;gpE2(Am) 

[Z(,*”), 2 ( u P ) ] =  - r g  @U P E  2 (U“) &ol= 0 

any 21 = 0. 

It should be noted that by putting M = 0 above one recovers the group law of G, ,OU(l) .  
It is however (2.7) which permits an isomorphism among the Lie and the Poisson 
brackets; the fact that the &u.)] cannot be made zero in 6 1 6  is a consequence 
of its being a true central extension of G15. 

We wish to find now a Lagrangian density invariant under the action of 6 1 6 .  We 
consider Lagrangian densities depending on the fields and their first derivatives. In 
the above vector bundle framework, fields are given by cross sections $ E T ( E ) ;  fields 
and derivatives of fields are incorporated by taking cross sections of the bundle J’(  E )  
of the 1-jets of E, on which the condition of being 1-jet cross sections is imposed?; 
Lagrangians are given as functions 2: J 1 ( E )  + R, 2( r, $‘, 4, $,, Gm $*, $:, 4:). To 
decide whether such a Lagrangian is invariant under GI6 it is necessary to lift the 
action (2.6) on E to an actioaon J ’ ( E ) .  This is uniquely done [15] by imposing on 
the ‘prolonged’ vector fields X ’  the conditions of being projectable onto the vector 
fields X on E of (2.6) and of preserving the 1-jet prolongation cross sections, i.e. of 
preserving the structure 1-forms 

8 = d $ - $ w d x p - $ c L , d r  

8” = d$* - $: dx” - $: d r  

which define when a cross section $’ = ($, $,, 
prolongation of $ E I-( E )  by means of the conditions 
imply 

$*, $*,, $:) E r( J ’ (  E ) )  is a 1-jet 
= 0 (which clearly = 0, 

= a,$, +b7 = a,$ etc). Thus, by imposing to the general vector field 

2’ = 2 + [x,* ala+, + x,, a/a$, + cc] (2.9) 

L p 8  = 8, L2,6* = e* (2.10) 

the conditions 

t A description of the variational principles on jet-bundles is given in [ I S ,  161. We use the same notation here. 
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(2.11) 

Since 6 1 6  has trivial cohomology, we may now look for a strictly invariant 
Lagrangian. The simplest solution for 

L S I 2  = 0 vZ’ in (2.11) (2.12) 

is provided by 

~’=;M-’I,!I:+* +si(+*+,- +TI)). (2.13) 

The ordinary Hamilton principle on J ’ (  E )  gives for (2.13) the Euler-Lagrange equation 

(2.14) i a,+ - ;M-’ a, a,+ = o 
similar to a Schrodinger equation in five dimensions. 

The expression for the conserved currents associated with the different transforma- 
tions of 616 is obtained from that of the general Noether current. Putting xA = (7, x,), 
p = 0, 1, 2, 3, this is given by El51 

j & =  (x&)-*Bx:)) a=wa*A+HC+=i4,),  (2.15) 

a = b, A,, J p y ,  U , ,  8; see (2.6). (Note that the 1-jet prolongations z1 are necessary 
only to check the invariance of 2 and that their additional components X+,, X+7 do 
not appear in the Noether currents.) Because adA = 0, the T component of the currents 
is the density which gives rise to the T conserved charges. These densities are 

(2.16) 

Finally, the full current associated to the phase transformation is 

j $ ,  = (-+*+, -;iM-’(+*+’ - +*”+)) = - ( p ,  j , ) .  (2.17) 

Although we shall have to wait for the addition of the mass/shell condition to 
interpret physically the charge densities of (2.16), it is worth noticing here that, formally, 
X plays the role of the covariant Hamiltonian, 9, that of four-momentum density 
(Po being associated with the customary Hamiltonian), ycLy that of a generalised 
angular momentum and X, that of the true position (‘centre-of-mass’) density. 
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3. Group manifold dynamics and the mass shell condition 

Before we impose a constraint on the Lagrangian theory of 9 2 aiming to put the 
solutions of (2.14) on the mass shell pwp,, = M 2 c 2 ,  it is necessary to analyse the 
meaning of this condition in a group framework since it involves more physical variables 
than just those appearing in the Lagrangian (2.13). Moreover, we wish that all the 
operations carried out on the above Lagrangian formalism be directly associated with 
the invariance group in the same sense that, for example, one would not admit other 
basic (i.e. canonical) observables than those associated with the Noether invariants of 
the 6 1 6  symm_etries. 

From the GI6 group law P, = g" * g" (equations (2.4) and (2.5)) two sets of invariant 
vector fields, left and right, may be derived by computing ag"'/a&=, and ag"'/ag"[g,=, 
respectively. We explicitly give here the right-invariant ones 

2%) = a/ab * P A W )  = a/aAp 

~ ~ O i , = f ( i + a 2 ) - 1 / 2 [ ( i + 2 ~ 2 ) 6 - : - a , a ~ ] a / a ~ J  

+$(I + .*)-'/'[(I - &2)1/2q!,k- $,,v)7llk1&']ak a / a d  

+ A'alaA' + A '  a/aAo+ U' a/au' + U '  a/auo (3.1) 
~ ~ , k - , l , = ~ [ ( i - & 2 ) ' / 2 s ~ + ~ ) 7 m n , & n ~ a / a ~ n + ~ 1 n , l ( a n  a / a a m + A n  a / a A m + u n  a/aum) 

ZPuW, = a/aup + b a/aAw + M A ~ S  

In (3.1) the Lorentz group is parametrised by ( E ,  a), where E corresponds to a rotation 
of angle cp = 2 sin-' I E ~  around the axis E,  and a characterises a boost such that, with 
x = tanh-'(u/cl, x = 2 sinh-'la(. 

The generators of (3.1) were utilised [13] in the group manifold quantisation 
formalism [6,13] to define quantum operators acting on wavefunctions, which in turn 
were defined from U(1)-equivariant (i.e. E J, = i4, 5 t+b* = -i$*) functions on 616. 
Accordingly, these operators should agree with the physical generators (2.6) which act 
on the pre-Klein-Gordon bundle (7, xp ,  9, +*). Indeed, eliminating ( u p ,  E ,  cy), changing 
M by -Mt and identifying (6 ,  Ap, 5, C*) with (7, x*, +, $*) respectively we obtain 
(2.6) from (3.1). This process of removing some variables is in practice rather involved 
although a standard one in geometric quantisation schemes, where it corresponds to 
defining a polarisation [17]. In our specific situation, it consists in polarising the 
U(l)-function on 6 1 6  by the set of conditions 

2rp, = i5 a / a g  = E. 

2 ; b )  $b = 0, Z&*) ' $ = 0, 2:**=0, 2: * = 0  (3.2) 

(associated with the polarisation subalgebra [6] ( g k b ) ,  

that CC, = $(b,  A,,, U " ,  E,  a )  is actually of the form 
2ks), * F a ) ) )  which imply 

J, = exp(-iMA@u,) exp(fiMu"u,b)cp(u', U )  (3.3) 

then a Fourier transformation of the 'momentum' space wavefunction cp(u', U )  gives 

t The expression of the quantum operators associated with group transformations are derived by comparing 
#(x) with the infinitesimally transformed #'(x) (this variation is given by the Lie derivative L x ) .  Thus, to 
compute the vector fields (2.6) we have to consider the transformation law in the form #'(x, T) = 
exp i.f(g, g-'(x, 7)) . #(g-'(x, 7)) rather than in the form (2.3), i.e. $'(g(x, 7)) = exp i[(g; (x, 7)) . #(x, 7). 
This leads to the above rule (note that the .f on the bundle E, (2.3), is simply obtained from that on the 
group, (2 .5 ) ,  by substituting x, T for A', b in the unprimed argument g and by adding the term in e). 
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the ‘stationary’ wavefunction associated with (2.14) on which the generators of (2.6) 
other than gkb) act. This vector field, 

r i k b )  =a/ab + U” a/aAp + ~ M u ~ u , E ,  (3.4) 

generates in fact the Euler-Lagrange equation (2.14) after identifying b with r, A” 
with x” and Mu,$ (which involves the ‘momentum’ Mu,) with i$”. This last identifica- 
tion is suggested by the Noethtr charge density j ; ,~)  (equation (2.16)) and the action 
of the quantum operator [13] P, = igpAg) on (3.3). 

Finally, we now put the theory on the mass shell. On our group formalism this 
means putting the following restriction of the unprimed factor of the group law 
it, = s“ * !2 

U0 = c( 1 + 2 2 )  = PO/ M 
=3 U”U, = c2 

U = 2c( l+  ( Y * ) ’ / ~ U  = p / M  
(3.5) 

where p w  is the momentum acquired by a particle of rest energy Mc2 boosted by a. 
This restriction, since it must transform the group law into a group action MI‘= 

g’m(  m”, m E 6161u~=p~LIM), makes sense only for the elements g’ which preserve the 
orbit 6161u~u,=c* and, accordingly, for the right (action) vector fields [ 131 which operate 
on the wavefunctions now restricted to 

$ = exp(-iA”pp,) exp(fiMc2b)cp(po,p). (3.6) 

The left vector field gbb) (3.4) which gives the equation of motion is also well behaved 
in the restriction process and leads to the familiar KG equation. It also now says how 
b is related to the other group parameters: b turns out to be the proper time of the 
particle. This is obtained by deriving the classical trajectory by integration of the 
evolution vector field Xkb); indeed dA”/db = U” implies, after using (3.5), dAw/db = 
P”/M. 

4. From the extended Minkowski space to Minkowski space: Lagrangian dynamics on 
the mass shell 

As discussed in the previous section, the mass shell condition on the manifold of 6 1 6  

is a constraint affecting several group parameters ( u p  -p” )  which do not appear 
directly in the Lagrangian formalism. (It is Itrue, nevertheless, that Mu” may be 
understood as the eigenvalue of the operator P(+) = i%pAp) (equation (3.1)) acting on 
the manifold of solutions (3.6) or of (2.14) where the mass shell condition-which 
identifies Mu” with p”-has been imposed.) 

It was also shown in 0 3 that the vector field zkb) was the generator of the evolution 
leading to the (Euler-Lagrange) wave equation. xkb) admits the restriction to the mass 
shell and-by means of the identifications after (3.4)-its expression on the space 
J ’ ( E )  of definition of Lagrangian is given by 

a l a r  + p ”  M-‘ a / a P  + f i  M c 2 E  (4.1) 
Now, let us define the variational principle for cross sections T ( E )  which are both 
1-jet ($” =a,$) and have null derivative under the action of (4.1). This means that 
in the Lagrangian density we may put 

$, = -~”M-’I/J, -fiMc2$. (4.2) 
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This gives 

which is the familiar KG Lagrangian density on J ’ ( E )  where now the KG bundle E is 
parametrised by ( x P ,  +, $*) [16]. 

In the same way, 12 out of the 16 current densities of (2.16), (2.17), pass to the 
restriction defining the (Poincark) 0 U( 1)  symmetry plus j { , ) .  These clearly correspond 
to the 12 right-invariant vector fields of (2.11) which are well defined (act on the orbit 
upuP = c 2 )  under the restriction. All these currents are associated with the standard 
Poincark currents for the Poincark group 

P?P = **p”* yp = * * ( x P p ”  - x ” p P ) *  (4.4) 

plusj[,), whose charge defines the evolution associated with the ‘invariant’ Hamiltonian 
X- +:I/P, and the one associated with U(l)  (equation (2.17)) which, because after 
imposing (4.2) we have a,($*$) = 0, leads to the familiar Klein-Gordon continuity 
equation 

P (**h - *:*I. (4.5) aJP = O  j =fiM-’  

We see thus how the ordinary conservation of the (non-positive definite) space integral 
of the Klein-Gordon ‘probability’ density j ,  is associated with the aforementioned 
U ( l )  factor. A similar analysis may be performed in the Galilean case [18] where the 
U ( l )  factor is the centre of the quantum group 6(,,,). 
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